Nuclear #1	Nuclear #2
A: Particles within the nucleus <i>i.e. protons and neutrons</i>	A: The strong force
<i>A:</i> Nuclei of the same element (i.e. same number of protons) with different masses (i.e. different number of neutrons)	Nuclear #4 A: U_{92}^{235} Mass number: 235 Atomic number: 92
Nuclear #5 A: Au_{79}^{197} $197 - 79 = 118 \ neutrons$	Nuclear #6 A: A becquerel is a unit to measure radioactivity, where 1 Bq = 1 decay per second.
Nuclear #7	Nuclear #8
A: Match the following A) Alpha decay Nucleus too big B) Beta minus decay Too many neutrons C) Beta plus decay Too many protons D) Gamma Decay Nucleus in excited s	A: A neutrino is formed when a positron is formed.

Nuclear #9	Nuclear #10	
Δ·	A. Iron 56 (26 protons 20 pautrons)	
7 ,		
It is heavier in a helium nucleus (the closer you		
ie is neaver in a nenalit nacieus (the closer you		
get to iron(26 protons), the lighter the		
nucieons.		

Nuclear #11	Nuclear #12
A:	A:
A positron and a neutrino.	An electron and an anti-neutrino

Nuclear #13	Nuclear #14
A:	A:
A helium nucleus – two protons and two	
neutrons	Fusion is where things are joined together and fission is where things are split apart

Nuclear #15	Nuclear #16
A: Total annihilation (no more mass)	A:
They are converted into raw energy in the form of EM waves (two identical photons that move in opposite directions)	Up/Down Top/Bottom Charm/Strange

Nuclea	ır #23	Nuclea	r #24
A :	8 hours is 2 half-lives. So activity halves twice. i.e. activity = 90 / 2 / 2 = 22.5 Bq	A:	600 / 2 / 2 / 2 = 75 Bq So 3 half-lives needed. 9 hours / 3 = 3 hours. i.e. half-life is 3 hours