A: Particles within the nucleus
i.e. protons and neutrons

A: The strong force

Nuclear \#4

A: U_{92}^{235}

Mass number: 235
Atomic number: 92

Nuclear \#5

A: $A u_{79}^{197}$

197-79 = 118 neutrons

Nuclear \#6
A: A becquerel is a unit to measure radioactivity, where $1 \mathrm{~Bq}=1$ decay per second.

Nuclear \#7
A: Match the following...

A) Alpha decay	Nucleus too big
B) Beta minus decay	Too many neutrons
C) Beta plus decay	Too many protons
D) Gamma Decay	Nucleus in excited state

Nuclear \#8
A: A neutrino is formed when a positron is formed.

A:

It is heavier in a helium nucleus (the closer you get to iron(26 protons), the lighter the nucleons.

A: Iron-56 (26 protons, 30 neutrons)

Nuclear \#12

A:

An electron and an anti-neutrino
Nuclear\#13
A: A helium nucleus - two protons and two
neutrons

Nuclear \#16
A:
Up/Down
Top/Bottom
Charm/Strange

A: Uranium with a higher percentage of U 235 (needed for induced fission).

A: When nuclear fission occurs, mass is lost and converted to energy.

Nuclear \#19 A: $U_{92}^{238} \longrightarrow T h_{90}^{234}+\alpha_{2}^{4}+\gamma$	Nuclear \#20 A: $O_{8}^{15} \longrightarrow N_{7}^{15}+\beta_{1}^{0}+v_{0}^{0}+\gamma$

Nuclear \#21
A:
$C_{6}^{14} \longrightarrow N_{7}^{14}+\beta_{-1}^{0}+\bar{v}_{0}^{0}+\gamma$

Nuclear \#22

A:

$$
U_{92}^{235}+n_{0}^{1} \longrightarrow X_{56}^{152}+Y_{36}^{80}+4 n_{0}^{1}+\gamma
$$

A: 8 hours is 2 half-lives.
So activity halves twice.
i.e. activity $=90 / 2 / 2=22.5 \mathrm{~Bq}$

A: $600 / 2 / 2 / 2=75 \mathrm{~Bq}$
So 3 half-lives needed.
9 hours $/ 3=3$ hours.
i.e. half-life is 3 hours

